mirror of
https://github.com/LukasKalbertodt/programmieren-in-rust.git
synced 2024-11-18 02:48:58 +01:00
Add solution for sheet 3
The Pokemon solution might be imperfect... but it's fine I guess
This commit is contained in:
parent
95de881390
commit
c57fd1f79c
107
aufgaben/sheet3/sol1/rule90.rs
Executable file
107
aufgaben/sheet3/sol1/rule90.rs
Executable file
@ -0,0 +1,107 @@
|
||||
//! Task 3.1: Rule 90
|
||||
|
||||
const NUM_ITERATIONS: u64 = 20;
|
||||
|
||||
fn main() {
|
||||
/// Helper function to pretty print the automaton state
|
||||
fn print_state(state: &[bool]) {
|
||||
for &cell in state {
|
||||
print!("{}", if cell { "██" } else { " " });
|
||||
}
|
||||
println!("");
|
||||
}
|
||||
|
||||
// Read initial state and print it
|
||||
let mut old_state = read_input();
|
||||
print_state(&old_state);
|
||||
|
||||
// Simulate automaton for 20 steps
|
||||
for _ in 0..NUM_ITERATIONS {
|
||||
let new_state = next_step(&old_state);
|
||||
print_state(&new_state);
|
||||
|
||||
// The new state is now the old one
|
||||
old_state = new_state;
|
||||
}
|
||||
}
|
||||
|
||||
/// Reads a valid initial configuration for our automaton from the terminal.
|
||||
fn read_input() -> Vec<bool> {
|
||||
// This tries to read a string from the terminal, checks whether it's
|
||||
// valid (only contains 1's and 0's). If the user fails to input a correct
|
||||
// string, this routine will ask again until the user finally manages to
|
||||
// give us a correct string.
|
||||
//
|
||||
// You don't need to understand this routine yet; that's why I've written
|
||||
// it already ;-)
|
||||
//
|
||||
// You only need to use the `input` variable (of type `String`). You can
|
||||
// also assume that it only contains '0' and '1' chars.
|
||||
let input = {
|
||||
let mut buffer = String::new();
|
||||
|
||||
loop {
|
||||
println!("Please give me the initial configuration (a string of '0' and '1'!):");
|
||||
buffer.clear();
|
||||
|
||||
// `read_line` returns an error if the input isn't valid UTF8 or if
|
||||
// a strange IO error occured. We just panic in that case...
|
||||
std::io::stdin()
|
||||
.read_line(&mut buffer)
|
||||
.expect("something went seriously wrong :O");
|
||||
|
||||
if buffer.trim().chars().all(|c| c == '1' || c == '0') {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
buffer.trim().to_string()
|
||||
};
|
||||
|
||||
// TODO: Task 1a)
|
||||
|
||||
// We can reduce the number of reallocations, because we know exactly how
|
||||
// long our vector will be.
|
||||
let mut out = Vec::with_capacity(input.len());
|
||||
|
||||
// We iterate through the whole string, pushing the corresponding boolean
|
||||
// value.
|
||||
for c in input.chars() {
|
||||
out.push(c == '1');
|
||||
}
|
||||
|
||||
out
|
||||
}
|
||||
|
||||
/// Given the state of the automaton at time n, this function will return the
|
||||
/// automaton's state at time n+1.
|
||||
fn next_step(old: &[bool]) -> Vec<bool> {
|
||||
// Note: this function signature is not optimal in terms of heap
|
||||
// allocations. The signature alone already implies that this function
|
||||
// always allocates a new vector. We could instead also pass a
|
||||
// `new: &mut Vec<bool>` argument to reuse a buffer.
|
||||
|
||||
// We know the final length, so we can reduce the number of reallocations
|
||||
// to one :)
|
||||
let mut out = Vec::with_capacity(old.len());
|
||||
|
||||
for i in 0..old.len() {
|
||||
// We need to handle the first and last cell.
|
||||
let right_index = (i + 1) % old.len();
|
||||
let left_index = (i + old.len() - 1) % old.len();
|
||||
|
||||
// The rules of Rule90 are actually just an XOR between the neighbor
|
||||
// cells.
|
||||
out.push(old[left_index] ^ old[right_index]);
|
||||
}
|
||||
|
||||
out
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn rule90_rules() {
|
||||
assert_eq!(next_step(&[false, false, false]), vec![false, false, false]);
|
||||
assert_eq!(next_step(&[ true, false, false]), vec![false, true, true]);
|
||||
assert_eq!(next_step(&[ true, true, false]), vec![ true, true, false]);
|
||||
assert_eq!(next_step(&[ true, true, true]), vec![false, false, false]);
|
||||
}
|
647
aufgaben/sheet3/sol2/poki.rs
Executable file
647
aufgaben/sheet3/sol2/poki.rs
Executable file
@ -0,0 +1,647 @@
|
||||
//! Task 3.2: Pokemon
|
||||
|
||||
fn main() {
|
||||
// Let both players choose their Pokemon
|
||||
let model_red = choose_pokemon("Player Red");
|
||||
let mut poki_red = Pokemon::with_level(model_red, 5);
|
||||
|
||||
let model_blue = choose_pokemon("Player Blue");
|
||||
let mut poki_blue = Pokemon::with_level(model_blue, 5);
|
||||
|
||||
|
||||
loop {
|
||||
fn check_dead(poki: &Pokemon) -> bool {
|
||||
if poki.is_alive() {
|
||||
false
|
||||
} else {
|
||||
println!(">>>>> {} fainted!", poki.name());
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
// Print status
|
||||
println!(
|
||||
">>>>> Status: {} has {} HP, {} has {} HP",
|
||||
poki_red.name(),
|
||||
poki_red.stats().hp,
|
||||
poki_blue.name(),
|
||||
poki_blue.stats().hp,
|
||||
);
|
||||
|
||||
// Execute both attack
|
||||
if poki_red.stats().speed > poki_blue.stats().speed {
|
||||
// Red attacks blue
|
||||
execute_round(&poki_red, &mut poki_blue);
|
||||
if check_dead(&poki_blue) {
|
||||
break;
|
||||
}
|
||||
|
||||
// BLue attacks red
|
||||
execute_round(&poki_blue, &mut poki_red);
|
||||
if check_dead(&poki_red) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// BLue attacks red
|
||||
execute_round(&poki_blue, &mut poki_red);
|
||||
if check_dead(&poki_red) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Red attacks blue
|
||||
execute_round(&poki_red, &mut poki_blue);
|
||||
if check_dead(&poki_blue) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Executes one round of one player:
|
||||
///
|
||||
/// - the player chooses one attack to execute
|
||||
/// - the attack is excuted and the enemy's HP
|
||||
fn execute_round(attacker: &Pokemon, defender: &mut Pokemon) {
|
||||
// Tell the user to choose an attack
|
||||
println!(
|
||||
">>>>> {} is about to attack! Which move shall it execute?",
|
||||
attacker.model().name
|
||||
);
|
||||
|
||||
// Print a list of available attacks
|
||||
let num_attacks = attacker.model().attacks.len();
|
||||
for i in 0..num_attacks {
|
||||
println!(" {}: {}", i, attacker.model().attacks[i].name);
|
||||
}
|
||||
println!(" !!! Please give me the attack ID:");
|
||||
|
||||
// Read attack ID from the user
|
||||
let attack_id;
|
||||
loop {
|
||||
let input = read_usize();
|
||||
if input >= num_attacks {
|
||||
println!(" !!! There is no attack with index {}!", input);
|
||||
} else {
|
||||
attack_id = input;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Execute attack
|
||||
let attack = *attacker.model().attacks[attack_id];
|
||||
defender.endure_attack(attacker, attack);
|
||||
|
||||
// Status update
|
||||
println!(
|
||||
">>>>> {} uses {}! ({} has {} HP left)",
|
||||
attacker.model().name,
|
||||
attack.name,
|
||||
defender.model().name,
|
||||
defender.stats().hp,
|
||||
);
|
||||
}
|
||||
|
||||
/// Let's the player choose a Pokemon from the database.
|
||||
fn choose_pokemon(player: &str) -> &'static PokemonModel {
|
||||
// Loop forever until the user has chosen a Pokemon
|
||||
loop {
|
||||
println!(
|
||||
"{}, please choose a Pokemon (or type '?' to get a complete list)",
|
||||
player,
|
||||
);
|
||||
|
||||
let input = read_string();
|
||||
if input == "?" {
|
||||
print_pokemon_list();
|
||||
} else {
|
||||
// Try to find a Pokemon with the given name
|
||||
match find_pokemon_by_name(&input) {
|
||||
Some(poki) => return poki,
|
||||
None => {
|
||||
println!("No pokemon with the name '{}' was found!", input);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Prints a list of all Pokemon in the database.
|
||||
fn print_pokemon_list() {
|
||||
for poki in POKEDEX {
|
||||
// This strange formatter will print the pokemon ID with three digits,
|
||||
// filling in 0 from the left if necessary (#003).
|
||||
println!("#{:0>3} {}", poki.id, poki.name);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Fetches a Pokemon model from the Pokedex specified by its name. If there
|
||||
/// is no Pokemon with the given name in the Pokedex, `None` is returned.
|
||||
fn find_pokemon_by_name(name: &str) -> Option<&'static PokemonModel> {
|
||||
for model in POKEDEX {
|
||||
if model.name == name {
|
||||
return Some(model);
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
/// Represents a Pokemon.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct Pokemon {
|
||||
/// Reference to the kind of the Pokemon, which contains the name, base
|
||||
/// stats, id and more global data.
|
||||
model: &'static PokemonModel,
|
||||
/// These are the actual stats of the pokemon, that fit to the current
|
||||
/// level
|
||||
stats: Stats,
|
||||
/// The current level of the Pokemon.
|
||||
level: u8,
|
||||
}
|
||||
|
||||
impl Pokemon {
|
||||
/// Creates a new living Pokemon of the given Pokemon kind (model) with the
|
||||
/// specified level.
|
||||
pub fn with_level(model: &'static PokemonModel, level: u8) -> Self {
|
||||
Pokemon {
|
||||
model: model,
|
||||
stats: Stats::at_level(model.base_stats, level),
|
||||
level: level,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the current stats.
|
||||
pub fn stats(&self) -> &Stats {
|
||||
&self.stats
|
||||
}
|
||||
|
||||
/// Returns the Pokemon kind of this Pokemon.
|
||||
pub fn model(&self) -> &'static PokemonModel {
|
||||
self.model
|
||||
}
|
||||
|
||||
/// Returns the name.
|
||||
pub fn name(&self) -> &str {
|
||||
self.model.name
|
||||
}
|
||||
|
||||
/// Returns the current level.
|
||||
pub fn level(&self) -> u8 {
|
||||
self.level
|
||||
}
|
||||
|
||||
/// Decreases the Pokemon's HP according to the given attack and attacker.
|
||||
pub fn endure_attack(&mut self, attacker: &Pokemon, attack: Attack) {
|
||||
let damage = attack_damage(attacker, self, attack);
|
||||
self.stats.hp = self.stats.hp.saturating_sub(damage);
|
||||
}
|
||||
|
||||
/// Returns whether or not the Pokemon is still alive (more than 0 HP).
|
||||
pub fn is_alive(&self) -> bool {
|
||||
self.stats.hp > 0
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Describes an attack with all its properties. This type is similar to
|
||||
/// `PokemonModel`, as there are finite many, immutable instances of this type
|
||||
/// in a database. This is not a type whose instances change over time.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct Attack {
|
||||
category: AttackCategory,
|
||||
name: &'static str,
|
||||
/// Base power of the move. The actual inflicted damage is calculated with
|
||||
/// a formula using the move's power and a few other parameters.
|
||||
base_power: u8,
|
||||
type_: Type,
|
||||
}
|
||||
|
||||
/// Category of an attack.
|
||||
///
|
||||
/// Note: currently, the category 'status' is missing.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
enum AttackCategory {
|
||||
/// Attacks with body contact, like "Tackle" or "Bite"
|
||||
Physical,
|
||||
/// Attacks without body contact, like "Bubble Beam" or "Thunderbolt"
|
||||
Special,
|
||||
}
|
||||
|
||||
/// Describes how effective an attack of one type is on a Pokemon of another
|
||||
/// type.
|
||||
///
|
||||
/// Note that a Pokemon can have two types. In order to determine the
|
||||
/// effectiveness, the multipliers of the effectivenesses on both types
|
||||
/// are multiplied. As such, there can be 0.25 and 4.0 multipliers!
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
enum TypeEffectiveness {
|
||||
NotEffective,
|
||||
NotVeryEffective,
|
||||
Normal,
|
||||
SuperEffective,
|
||||
}
|
||||
|
||||
impl TypeEffectiveness {
|
||||
/// Returns the type effectiveness of an attack from one attacker type
|
||||
/// on one defender type.
|
||||
fn of_attack(attacker: Type, defender: Type) -> Self {
|
||||
use Type::*;
|
||||
use TypeEffectiveness as Te;
|
||||
|
||||
// TODO: complete this
|
||||
match (attacker, defender) {
|
||||
(Fire, Water) => Te::NotVeryEffective,
|
||||
(Fire, Grass) => Te::SuperEffective,
|
||||
(Water, Fire) => Te::SuperEffective,
|
||||
(Water, Grass) => Te::NotVeryEffective,
|
||||
(Grass, Fire) => Te::NotVeryEffective,
|
||||
(Grass, Water) => Te::SuperEffective,
|
||||
_ => Te::Normal,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the corresponding multiplier for the damage formula.
|
||||
fn multiplier(&self) -> f64 {
|
||||
match *self {
|
||||
TypeEffectiveness::NotEffective => 0.0,
|
||||
TypeEffectiveness::NotVeryEffective => 0.5,
|
||||
TypeEffectiveness::Normal => 1.0,
|
||||
TypeEffectiveness::SuperEffective => 2.0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Types (sometimes called "elements") of the Pokemon universe. Each
|
||||
/// attack-move has exactly one type, Pokemons can have one or two types.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
#[allow(dead_code)]
|
||||
enum Type {
|
||||
Normal,
|
||||
Fire,
|
||||
Fighting,
|
||||
Water,
|
||||
Flying,
|
||||
Grass,
|
||||
Poison,
|
||||
Electric,
|
||||
Ground,
|
||||
Psychic,
|
||||
Rock,
|
||||
Ice,
|
||||
Bug,
|
||||
Dragon,
|
||||
Ghost,
|
||||
Dark,
|
||||
Steel,
|
||||
Fairy,
|
||||
}
|
||||
|
||||
/// Describes the type of a Pokemon. Pokemon can have one or two types.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
enum PokemonType {
|
||||
One(Type),
|
||||
Two(Type, Type),
|
||||
}
|
||||
|
||||
/// Describes a kind of Pokemon, e.g. "Pikachu".
|
||||
///
|
||||
/// This is different than an actual, living Pokemon. This struct just
|
||||
/// describes properties that are the same for every creature of this
|
||||
/// Pokemon kind.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct PokemonModel {
|
||||
/// Name of the Pokemon
|
||||
name: &'static str,
|
||||
/// ID in the international Pokedex
|
||||
id: u16,
|
||||
type_: PokemonType,
|
||||
base_stats: Stats,
|
||||
/// This is different from the real Pokemon games: attacks are not part
|
||||
/// of the Pokemon model, but of the Pokemon itself (as they change over
|
||||
/// time). A pokemon just has an abstract learnset of potential attacks.
|
||||
/// But this is easier for now.
|
||||
attacks: &'static [&'static Attack]
|
||||
}
|
||||
|
||||
/// Describes the basic stats of a Pokemon.
|
||||
///
|
||||
/// Each living Pokemon has an actual stat value, but each Pokemon kind also
|
||||
/// has so called "base stats". These base stats are used to calculate the
|
||||
/// actual stats, whose depend on the Pokemon's current level. Stronger Pokemon
|
||||
/// have higher base stats.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct Stats {
|
||||
/// Health points
|
||||
hp: u16,
|
||||
/// Speed, sometimes called initiative (INIT)
|
||||
speed: u16,
|
||||
/// Strength of physical attacks (like "Tackle")
|
||||
attack: u16,
|
||||
/// Strength of special attacks (like "Bubble Beam")
|
||||
special_attack: u16,
|
||||
/// Defense power against physical attacks (like "Tackle")
|
||||
defense: u16,
|
||||
/// Defense power against special attacks (like "Bubble Beam")
|
||||
special_defense: u16,
|
||||
}
|
||||
|
||||
impl Stats {
|
||||
/// Given the base stats and a level, this function returns the actual
|
||||
/// stats for that level.
|
||||
///
|
||||
/// This function doesn't implement the correct formula used by Pokemon
|
||||
/// games. It is a simplified version of the original formula for now: we
|
||||
/// ignore IVs, EVs and the Pokemon's nature). The complete formula can be
|
||||
/// found [here (HP)][1] and [here (other stats)][2].
|
||||
///
|
||||
/// [1]: http://bulbapedia.bulbagarden.net/wiki/File:HPStatCalcGen34.png
|
||||
/// [2]: http://bulbapedia.bulbagarden.net/wiki/File:OtherStatCalcGen34.png
|
||||
fn at_level(base: Self, level: u8) -> Self {
|
||||
/// The formula is the same for all stats != hp
|
||||
fn stat_formula(base: u16, level: u8) -> u16 {
|
||||
((base as f64 * level as f64) / 50.0 + 5.0) as u16
|
||||
}
|
||||
|
||||
let hp = (
|
||||
(base.hp as f64 * level as f64) / 50.0
|
||||
+ level as f64
|
||||
+ 10.0
|
||||
) as u16;
|
||||
|
||||
Stats {
|
||||
hp: hp,
|
||||
speed: stat_formula(base.speed, level),
|
||||
attack: stat_formula(base.attack, level),
|
||||
special_attack: stat_formula(base.special_attack, level),
|
||||
defense: stat_formula(base.defense, level),
|
||||
special_defense: stat_formula(base.special_defense, level),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
// Formulas to calculate stuff
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
|
||||
/// Calculates the damage of an attack. We don't use the exact formula, but
|
||||
/// a simplified version of it. In particular, we simplified the "Modifier"
|
||||
/// term quite a bit. The correct and complete formula can be found [here][1].
|
||||
///
|
||||
/// [1]: http://bulbapedia.bulbagarden.net/wiki/Damage#Damage_formula
|
||||
fn attack_damage(attacker: &Pokemon, defender: &Pokemon, attack: Attack) -> u16 {
|
||||
// Depending on the attack category, get the correct stats
|
||||
let (attack_mod, defense_mod) = match attack.category {
|
||||
AttackCategory::Physical => {
|
||||
(attacker.stats().attack, defender.stats().defense)
|
||||
}
|
||||
AttackCategory::Special => {
|
||||
(attacker.stats().special_attack, defender.stats().special_defense)
|
||||
}
|
||||
};
|
||||
|
||||
// Cast everything to f64 to reduce noise in actual formula
|
||||
let (attack_mod, defense_mod) = (attack_mod as f64, defense_mod as f64);
|
||||
let base_power = attack.base_power as f64;
|
||||
let attacker_level = attacker.level() as f64;
|
||||
|
||||
// The modifier only depends on the type effectiveness (in our simplified
|
||||
// version!).
|
||||
let modifier = match defender.model().type_ {
|
||||
PokemonType::One(ty) => {
|
||||
TypeEffectiveness::of_attack(attack.type_, ty).multiplier()
|
||||
}
|
||||
PokemonType::Two(ty_a, ty_b) => {
|
||||
TypeEffectiveness::of_attack(attack.type_, ty_a).multiplier()
|
||||
* TypeEffectiveness::of_attack(attack.type_, ty_b).multiplier()
|
||||
}
|
||||
};
|
||||
|
||||
// With every parameter prepared above, here is the formula
|
||||
(
|
||||
(
|
||||
((2.0 * attacker_level + 10.0) / 250.0)
|
||||
* (attack_mod / defense_mod)
|
||||
* base_power
|
||||
+ 2.0
|
||||
) * modifier
|
||||
) as u16
|
||||
}
|
||||
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
// This is just constant data!
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
|
||||
/// The Pokemon database!
|
||||
///
|
||||
/// Apart from the "attacks" field, all values are correct.
|
||||
const POKEDEX: &'static [PokemonModel] = &[
|
||||
PokemonModel {
|
||||
name: "Bulbasaur",
|
||||
id: 001,
|
||||
type_: PokemonType::Two(Type::Poison, Type::Grass),
|
||||
base_stats: Stats {
|
||||
hp: 45,
|
||||
attack: 49,
|
||||
defense: 49,
|
||||
special_attack: 65,
|
||||
special_defense: 65,
|
||||
speed: 45,
|
||||
},
|
||||
attacks: &[TACKLE],
|
||||
},
|
||||
PokemonModel {
|
||||
name: "Ivysaur",
|
||||
id: 002,
|
||||
type_: PokemonType::Two(Type::Poison, Type::Grass),
|
||||
base_stats: Stats {
|
||||
hp: 60,
|
||||
attack: 62,
|
||||
defense: 63,
|
||||
special_attack: 80,
|
||||
special_defense: 80,
|
||||
speed: 60,
|
||||
},
|
||||
attacks: &[TACKLE, VINE_WHIP],
|
||||
},
|
||||
PokemonModel {
|
||||
name: "Venusaur",
|
||||
id: 003,
|
||||
type_: PokemonType::Two(Type::Poison, Type::Grass),
|
||||
base_stats: Stats {
|
||||
hp: 80,
|
||||
attack: 82,
|
||||
defense: 83,
|
||||
special_attack: 100,
|
||||
special_defense: 100,
|
||||
speed: 80,
|
||||
},
|
||||
attacks: &[TACKLE, VINE_WHIP],
|
||||
},
|
||||
PokemonModel {
|
||||
name: "Charmander",
|
||||
id: 004,
|
||||
type_: PokemonType::One(Type::Fire),
|
||||
base_stats: Stats {
|
||||
hp: 39,
|
||||
attack: 52,
|
||||
defense: 43,
|
||||
special_attack: 60,
|
||||
special_defense: 50,
|
||||
speed: 65,
|
||||
},
|
||||
attacks: &[TACKLE],
|
||||
},
|
||||
PokemonModel {
|
||||
name: "Charmeleon",
|
||||
id: 005,
|
||||
type_: PokemonType::One(Type::Fire),
|
||||
base_stats: Stats {
|
||||
hp: 58,
|
||||
attack: 64,
|
||||
defense: 58,
|
||||
special_attack: 80,
|
||||
special_defense: 65,
|
||||
speed: 80,
|
||||
},
|
||||
attacks: &[TACKLE, EMBER],
|
||||
},
|
||||
PokemonModel {
|
||||
name: "Charizard",
|
||||
id: 006,
|
||||
type_: PokemonType::Two(Type::Fire, Type::Flying),
|
||||
base_stats: Stats {
|
||||
hp: 78,
|
||||
attack: 84,
|
||||
defense: 78,
|
||||
special_attack: 109,
|
||||
special_defense: 85,
|
||||
speed: 100,
|
||||
},
|
||||
attacks: &[TACKLE, EMBER],
|
||||
},
|
||||
PokemonModel {
|
||||
name: "Squirtle",
|
||||
id: 007,
|
||||
type_: PokemonType::One(Type::Water),
|
||||
base_stats: Stats {
|
||||
hp: 44,
|
||||
attack: 48,
|
||||
defense: 65,
|
||||
special_attack: 50,
|
||||
special_defense: 64,
|
||||
speed: 43,
|
||||
},
|
||||
attacks: &[TACKLE],
|
||||
},
|
||||
PokemonModel {
|
||||
name: "Wartortle",
|
||||
id: 008,
|
||||
type_: PokemonType::One(Type::Water),
|
||||
base_stats: Stats {
|
||||
hp: 59,
|
||||
attack: 63,
|
||||
defense: 80,
|
||||
special_attack: 65,
|
||||
special_defense: 80,
|
||||
speed: 58,
|
||||
},
|
||||
attacks: &[TACKLE, WATER_GUN],
|
||||
},
|
||||
PokemonModel {
|
||||
name: "Blastoise",
|
||||
id: 009,
|
||||
type_: PokemonType::One(Type::Water),
|
||||
base_stats: Stats {
|
||||
hp: 79,
|
||||
attack: 83,
|
||||
defense: 100,
|
||||
special_attack: 85,
|
||||
special_defense: 105,
|
||||
speed: 78,
|
||||
},
|
||||
attacks: &[TACKLE, WATER_GUN],
|
||||
},
|
||||
];
|
||||
|
||||
/// List of all attacks.
|
||||
///
|
||||
/// Of course, these are not all attacks. We will probably provide a much
|
||||
/// bigger database with the next sheet.
|
||||
const ATTACK_DB: &'static [Attack] = &[
|
||||
Attack {
|
||||
category: AttackCategory::Physical,
|
||||
name: "Tackle",
|
||||
base_power: 50,
|
||||
type_: Type::Normal,
|
||||
},
|
||||
Attack {
|
||||
category: AttackCategory::Special,
|
||||
name: "Vine Whip",
|
||||
base_power: 45,
|
||||
type_: Type::Grass,
|
||||
},
|
||||
Attack {
|
||||
category: AttackCategory::Special,
|
||||
name: "Ember",
|
||||
base_power: 40,
|
||||
type_: Type::Fire,
|
||||
},
|
||||
Attack {
|
||||
category: AttackCategory::Special,
|
||||
name: "Water Gun",
|
||||
base_power: 40,
|
||||
type_: Type::Water,
|
||||
},
|
||||
];
|
||||
|
||||
// These are just some easy names to be more expressive in the Pokedex.
|
||||
const TACKLE: &'static Attack = &ATTACK_DB[0];
|
||||
const VINE_WHIP: &'static Attack = &ATTACK_DB[1];
|
||||
const EMBER: &'static Attack = &ATTACK_DB[2];
|
||||
const WATER_GUN: &'static Attack = &ATTACK_DB[3];
|
||||
|
||||
|
||||
|
||||
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
// Helper functions (you don't need to understand how they work yet)
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
// ===========================================================================
|
||||
|
||||
/// Reads a string from the terminal/user.
|
||||
fn read_string() -> String {
|
||||
let mut buffer = String::new();
|
||||
std::io::stdin()
|
||||
.read_line(&mut buffer)
|
||||
.expect("something went horribly wrong...");
|
||||
|
||||
// Discard trailing newline
|
||||
let new_len = buffer.trim_right().len();
|
||||
buffer.truncate(new_len);
|
||||
|
||||
buffer
|
||||
}
|
||||
|
||||
/// Reads a valid `usize` integer from the terminal/user.
|
||||
fn read_usize() -> usize {
|
||||
loop {
|
||||
match read_string().parse() {
|
||||
Ok(res) => return res,
|
||||
Err(_) => println!("That was not an integer! Please try again!"),
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user