mirror of
https://github.com/LukasKalbertodt/programmieren-in-rust.git
synced 2025-01-18 22:58:09 +01:00
58 lines
1.4 KiB
Rust
Executable File
58 lines
1.4 KiB
Rust
Executable File
/// Prints all happy primes between 1 and 20.
|
|
fn main() {
|
|
for i in 1..21 {
|
|
if is_happy_prime(i) {
|
|
println!("{} is a happy prime!", i);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines whether the given number is a happy number AND a prime number.
|
|
fn is_happy_prime(n: u64) -> bool {
|
|
is_happy(n) && is_prime(n)
|
|
}
|
|
|
|
/// Determines whether the given, positive number is a [happy number][1].
|
|
///
|
|
/// [1]: https://en.wikipedia.org/wiki/Happy_number
|
|
fn is_happy(mut number: u64) -> bool {
|
|
// Either we end as "1" or in a cycle
|
|
while number > 1 {
|
|
number = {
|
|
// Here we compute the sum of squares of all digits. The trick is that
|
|
// the last digit is `number % 10` and that we can remove the last
|
|
// digit by dividing number by 10.
|
|
let mut sum = 0;
|
|
while number > 0 {
|
|
let digit = number % 10;
|
|
sum += digit * digit;
|
|
number /= 10;
|
|
}
|
|
|
|
sum
|
|
};
|
|
|
|
// We ended up in a cycle -> not happy
|
|
if number == 4 {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
/// Determines whether the given, positive, non-zero number is a prime number.
|
|
fn is_prime(n: u64) -> bool {
|
|
if n == 1 {
|
|
return false;
|
|
}
|
|
|
|
for divisor in 2..n {
|
|
if n % divisor == 0 {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|