mirror of
https://github.com/LukasKalbertodt/programmieren-in-rust.git
synced 2025-01-19 07:08:08 +01:00
451 lines
13 KiB
Rust
Executable File
451 lines
13 KiB
Rust
Executable File
//! A simple command-line calculator
|
|
//!
|
|
|
|
/// The integer type we use internally to hold the numbers.
|
|
type Integer = i64;
|
|
|
|
/// Represents an operation our calculator can carry out.
|
|
#[derive(Debug, Clone, Copy, PartialEq)]
|
|
enum Op {
|
|
Add,
|
|
Subtract,
|
|
}
|
|
|
|
impl Op {
|
|
/// The operation is applied to the given `lhs` and `rhs`. If an overflow
|
|
/// occured during the operation, None is returned.
|
|
fn apply(&self, lhs: Integer, rhs: Integer) -> Option<Integer> {
|
|
match *self {
|
|
Op::Add => lhs.checked_add(rhs),
|
|
Op::Subtract => lhs.checked_sub(rhs),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Represents a (part of a) calculation.
|
|
#[derive(Debug, PartialEq)]
|
|
enum Expr {
|
|
/// Just a literal number (no calculation needed)
|
|
Literal(Integer),
|
|
|
|
/// An operation with two operands
|
|
Op {
|
|
/// Kind of operation
|
|
operator: Op,
|
|
|
|
/// The Operands.
|
|
///
|
|
/// The task said the operands should be saved as `Vec<Expr>`
|
|
/// and it would be fine to hand in such a solution, but a vector
|
|
/// is actually the wrong type here. We know that we always have
|
|
/// exactly two operands, so a type that can hold any number of items
|
|
/// is not correct.
|
|
///
|
|
/// The correct type is a pair or an array with two elements. But this
|
|
/// will lead to a problem: fields are saved inside of the type and
|
|
/// therefore it's not possible to have a recursive definition. The
|
|
/// only way to do it, is to introduce one layer of indirection. A
|
|
/// vector is such a layer, because it saves its contents on the heap.
|
|
///
|
|
/// A better choice is `Box<T>`. As a vector, it stores its content
|
|
/// on the heap and also owns the content. But unlike the vector, a box
|
|
/// always saves one element only.
|
|
operands: Box<[Expr; 2]>,
|
|
}
|
|
}
|
|
|
|
/// Stuff that can go wrong during parsing. Of course, it's desirable to have
|
|
/// even more information about an error, but this is not in the scope of this
|
|
/// task. Apart from that, good error reporting is hard. That's why so many
|
|
/// compiler (especially a few years ago) suck at it.
|
|
#[derive(Debug, Clone, Copy)]
|
|
enum ParseError {
|
|
/// Empty input
|
|
Empty,
|
|
|
|
/// A token that was not expected at that position in the input
|
|
UnexpectedToken(Token),
|
|
|
|
/// More tokens were expected
|
|
UnexpectedEof,
|
|
|
|
/// There are unmatched parenthesis
|
|
UnmatchedParens,
|
|
|
|
/// More tokens in the input found, although none were expected
|
|
UnexpectedAdditionalTokens,
|
|
}
|
|
|
|
impl Expr {
|
|
/// This function parses a list of tokens and returns the corresponding
|
|
/// expression tree, if the parse was successful. The grammar for our
|
|
/// expressions is:
|
|
///
|
|
/// ```
|
|
/// expr := ⟨operand⟩ [⟨op⟩ ⟨operand⟩]
|
|
/// operand := ⟨num⟩ | "(" ⟨expr⟩ ")"
|
|
/// op := "+" | "-"
|
|
/// num := "0" | "1" | ... | "9"
|
|
/// ```
|
|
///
|
|
/// Parsing is difficult. Parsing mathematical infix notation like this can
|
|
/// be done with the Shunting-yard algorithm [1]. But more general parsing
|
|
/// algorithms to parse determinstic context-free grammars can be used,
|
|
/// too. Recursive descent parsers are probably rather similar to the way
|
|
/// humans think about a grammar.
|
|
///
|
|
/// This implementation does not implement a concrete algorithm (as far as
|
|
/// I know).
|
|
///
|
|
/// [1]: https://en.wikipedia.org/wiki/Shunting-yard_algorithm
|
|
fn parse(tokens: &[Token]) -> Result<Self, ParseError> {
|
|
/// Parses an operand:
|
|
///
|
|
/// ```
|
|
/// operand := ⟨num⟩ | "(" ⟨expr⟩ ")"
|
|
/// ```
|
|
///
|
|
/// Note that it's usually nicer to build subslices of a slice instead
|
|
/// of passing indices manually. But in this case it makes sense to
|
|
/// work with "global" indices, because this function also returns an
|
|
/// index into the slice.
|
|
fn parse_operand(tokens: &[Token], start: usize)
|
|
-> Result<(Expr, usize), ParseError>
|
|
{
|
|
// At this point, we expect an operand, so there need to be some
|
|
// tokens left
|
|
if start >= tokens.len() {
|
|
return Err(ParseError::UnexpectedEof);
|
|
}
|
|
|
|
match tokens[start] {
|
|
// The operand is just a literal number
|
|
Token::Number(n) => Ok((Expr::Literal(n), start + 1)),
|
|
|
|
// The operand is some operation
|
|
Token::ParenOpen => {
|
|
match parse_expr(tokens, start + 1) {
|
|
Err(e) => Err(e),
|
|
Ok((expr, after_expr)) => {
|
|
// We expect the closing paren after the parsed
|
|
// expression
|
|
if tokens.get(after_expr) != Some(&Token::ParenClose) {
|
|
return Err(ParseError::UnmatchedParens);
|
|
}
|
|
Ok((expr, after_expr + 1))
|
|
}
|
|
}
|
|
}
|
|
|
|
// An operand starts either with a number or an opening paren
|
|
tok => Err(ParseError::UnexpectedToken(tok)),
|
|
}
|
|
}
|
|
|
|
/// Parses an expression:
|
|
///
|
|
/// ```
|
|
/// expr := ⟨operand⟩ [⟨op⟩ ⟨operand⟩]
|
|
/// ```
|
|
///
|
|
fn parse_expr(tokens: &[Token], start: usize)
|
|
-> Result<(Expr, usize), ParseError>
|
|
{
|
|
// First: parse the left hand side (lhs).
|
|
let (lhs, after_lhs) = match parse_operand(tokens, start) {
|
|
Err(e) => return Err(e),
|
|
Ok(tuple) => tuple,
|
|
};
|
|
|
|
// If the lhs consumed all of our tokens, the LHS is the only
|
|
// expression -> return it. Otherwise we expect an operator.
|
|
let op = match tokens.get(after_lhs) {
|
|
Some(&Token::Plus) => Op::Add,
|
|
Some(&Token::Minus) => Op::Subtract,
|
|
_ => return Ok((lhs, after_lhs)),
|
|
};
|
|
|
|
// Parse the rhs.
|
|
let (rhs, after_rhs) = match parse_operand(tokens, after_lhs + 1) {
|
|
Err(e) => return Err(e),
|
|
Ok(tuple) => tuple,
|
|
};
|
|
|
|
Ok((
|
|
Expr::Op {
|
|
operator: op,
|
|
operands: Box::new([lhs, rhs]),
|
|
},
|
|
after_rhs,
|
|
))
|
|
}
|
|
|
|
|
|
// Check for special case: no tokens.
|
|
if tokens.is_empty() {
|
|
return Err(ParseError::Empty);
|
|
}
|
|
|
|
// Start parsing the token stream as ⟨expr⟩
|
|
let (expr, after_expr) = match parse_expr(&tokens, 0){
|
|
Err(e) => return Err(e),
|
|
Ok(t) => t,
|
|
};
|
|
|
|
// Check if tokens are left (shouldn't happen) and return an error
|
|
// if that is the case.
|
|
if after_expr < tokens.len() {
|
|
return Err(ParseError::UnexpectedAdditionalTokens);
|
|
}
|
|
|
|
Ok(expr)
|
|
}
|
|
|
|
/// Evaluates the expression tree to calculate the final result. If an
|
|
/// overflow occured, None is returned.
|
|
fn evaluate(&self) -> Option<Integer> {
|
|
match *self {
|
|
Expr::Literal(value) => Some(value),
|
|
Expr::Op { operator, ref operands } => {
|
|
let lhs = match operands[0].evaluate() {
|
|
None => return None,
|
|
Some(lhs) => lhs,
|
|
};
|
|
|
|
let rhs = match operands[1].evaluate() {
|
|
None => return None,
|
|
Some(rhs) => rhs,
|
|
};
|
|
|
|
operator.apply(lhs, rhs)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A token in the input stream.
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
enum Token {
|
|
Plus,
|
|
Minus,
|
|
ParenOpen,
|
|
ParenClose,
|
|
Number(Integer),
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
enum LexError {
|
|
InvalidChar(char),
|
|
Overflow,
|
|
}
|
|
|
|
/// Tokenizes the string and returns a list of tokens, if the input is valid.
|
|
fn tokenize(input: &str) -> Result<Vec<Token>, LexError> {
|
|
let mut out = Vec::new();
|
|
let mut current_number = String::new();
|
|
|
|
for c in input.chars() {
|
|
// Check if we were reading a number and reached the end of it
|
|
if !current_number.is_empty() && !(c >= '0' && c <= '9') {
|
|
let num: Integer = match current_number.parse() {
|
|
// The string contains valid digits only, so "overflow" is the
|
|
// only reason `parse()` would error.
|
|
Err(_) => return Err(LexError::Overflow),
|
|
Ok(v) => v,
|
|
};
|
|
out.push(Token::Number(num));
|
|
current_number.clear();
|
|
}
|
|
|
|
let token = match c {
|
|
'+' => Token::Plus,
|
|
'-' => Token::Minus,
|
|
'(' => Token::ParenOpen,
|
|
')' => Token::ParenClose,
|
|
c @ '0' ... '9' => {
|
|
// We do not yet generate a token, but only push the char on
|
|
// the number buffer
|
|
current_number.push(c);
|
|
continue;
|
|
},
|
|
c if c.is_whitespace() => continue,
|
|
c => return Err(LexError::InvalidChar(c)),
|
|
};
|
|
out.push(token);
|
|
}
|
|
|
|
// If the last token is a number, we still have to push it
|
|
if !current_number.is_empty() {
|
|
let num: Integer = match current_number.parse() {
|
|
// The string contains valid digits only, so "overflow" is the
|
|
// only reason `parse()` would error.
|
|
Err(_) => return Err(LexError::Overflow),
|
|
Ok(v) => v,
|
|
};
|
|
out.push(Token::Number(num));
|
|
}
|
|
|
|
Ok(out)
|
|
}
|
|
|
|
fn main() {
|
|
loop {
|
|
// Read input from the user and just do nothing when the input is empty
|
|
let input = read_string();
|
|
if input.is_empty() {
|
|
continue;
|
|
}
|
|
|
|
// Try to tokenize the input. If it fails, print error message and
|
|
// start anew.
|
|
let tokens = match tokenize(&input) {
|
|
Err(e) => {
|
|
println!("{:?}", e);
|
|
continue;
|
|
}
|
|
Ok(tokens) => tokens,
|
|
};
|
|
|
|
// Debug output
|
|
// println!("{:?}", tokens);
|
|
|
|
// Try to parse the tokenstream into an expression. If it fails,
|
|
// print the error and start anew.
|
|
let expr = match Expr::parse(&tokens) {
|
|
Err(e) => {
|
|
println!("error: {:?}", e);
|
|
continue;
|
|
}
|
|
Ok(expr) => expr,
|
|
};
|
|
|
|
// Debug output
|
|
// println!("{:?}", expr);
|
|
|
|
// Evaluate the expression and print the result
|
|
match expr.evaluate() {
|
|
None => println!("Overflow occured!"),
|
|
Some(res) => println!("{}", res),
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Reads a string from the user (with a nice prompt).
|
|
fn read_string() -> String {
|
|
use std::io::Write;
|
|
|
|
// Print prompt
|
|
print!("calc > ");
|
|
std::io::stdout().flush().unwrap();
|
|
|
|
// Read line
|
|
let mut buffer = String::new();
|
|
std::io::stdin()
|
|
.read_line(&mut buffer)
|
|
.expect("something went horribly wrong...");
|
|
|
|
// Discard trailing newline
|
|
let new_len = buffer.trim_right().len();
|
|
buffer.truncate(new_len);
|
|
|
|
buffer
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn parser_valid() {
|
|
use Token::*;
|
|
|
|
// "3"
|
|
assert_eq!(
|
|
Expr::parse(&[Number(3)]).unwrap(),
|
|
Expr::Literal(3)
|
|
);
|
|
|
|
// "(3)"
|
|
assert_eq!(
|
|
Expr::parse(&[ParenOpen, Number(3), ParenClose]).unwrap(),
|
|
Expr::Literal(3)
|
|
);
|
|
|
|
// "3 + 4"
|
|
assert_eq!(
|
|
Expr::parse(&[Number(3), Plus, Number(4)]).unwrap(),
|
|
Expr::Op {
|
|
operator: Op::Add,
|
|
operands: Box::new([
|
|
Expr::Literal(3),
|
|
Expr::Literal(4),
|
|
]),
|
|
}
|
|
);
|
|
|
|
// "(3 + 4)"
|
|
assert_eq!(
|
|
Expr::parse(&[ParenOpen, Number(3), Plus, Number(4), ParenClose]).unwrap(),
|
|
Expr::Op {
|
|
operator: Op::Add,
|
|
operands: Box::new([
|
|
Expr::Literal(3),
|
|
Expr::Literal(4),
|
|
]),
|
|
}
|
|
);
|
|
|
|
// "(3) + 4"
|
|
assert_eq!(
|
|
Expr::parse(&[ParenOpen, Number(3), ParenClose, Plus, Number(4)]).unwrap(),
|
|
Expr::Op {
|
|
operator: Op::Add,
|
|
operands: Box::new([
|
|
Expr::Literal(3),
|
|
Expr::Literal(4),
|
|
]),
|
|
}
|
|
);
|
|
|
|
// "(3 - 7) + 4"
|
|
assert_eq!(
|
|
Expr::parse(&[
|
|
ParenOpen, Number(3), Minus, Number(7), ParenClose, Plus, Number(4)
|
|
]).unwrap(),
|
|
Expr::Op {
|
|
operator: Op::Add,
|
|
operands: Box::new([
|
|
Expr::Op {
|
|
operator: Op::Subtract,
|
|
operands: Box::new([
|
|
Expr::Literal(3),
|
|
Expr::Literal(7),
|
|
]),
|
|
},
|
|
Expr::Literal(4),
|
|
]),
|
|
}
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn parser_invalid() {
|
|
use Token::*;
|
|
|
|
// ""
|
|
assert!(Expr::parse(&[]).is_err());
|
|
|
|
// "-"
|
|
assert!(Expr::parse(&[Minus]).is_err());
|
|
|
|
// "1 +"
|
|
assert!(Expr::parse(&[Number(1), Plus]).is_err());
|
|
|
|
// "1 + 2 + 3"
|
|
assert!(Expr::parse(&[Number(1), Plus, Number(2), Plus, Number(3)]).is_err());
|
|
|
|
// "(1"
|
|
assert!(Expr::parse(&[ParenOpen, Number(1)]).is_err());
|
|
|
|
// "1)"
|
|
assert!(Expr::parse(&[Number(1), ParenClose]).is_err());
|
|
}
|