mirror of
https://github.com/LukasKalbertodt/programmieren-in-rust.git
synced 2024-11-18 02:48:58 +01:00
Add sheet4 solution
This commit is contained in:
parent
315b5d1f5e
commit
37fe1635d0
1
.gitignore
vendored
Executable file
1
.gitignore
vendored
Executable file
@ -0,0 +1 @@
|
||||
*.exe
|
57
aufgaben/sheet4/sol1/good.rs
Executable file
57
aufgaben/sheet4/sol1/good.rs
Executable file
@ -0,0 +1,57 @@
|
||||
/// Prints all happy primes between 1 and 20.
|
||||
fn main() {
|
||||
for i in 1..21 {
|
||||
if is_happy_prime(i) {
|
||||
println!("{} is a happy prime!", i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Determines whether the given number is a happy number AND a prime number.
|
||||
fn is_happy_prime(n: u64) -> bool {
|
||||
is_happy(n) && is_prime(n)
|
||||
}
|
||||
|
||||
/// Determines whether the given, positive number is a [happy number][1].
|
||||
///
|
||||
/// [1]: https://en.wikipedia.org/wiki/Happy_number
|
||||
fn is_happy(mut number: u64) -> bool {
|
||||
// Either we end as "1" or in a cycle
|
||||
while number > 1 {
|
||||
number = {
|
||||
// Here we compute the sum of squares of all digits. The trick is that
|
||||
// the last digit is `number % 10` and that we can remove the last
|
||||
// digit by dividing number by 10.
|
||||
let mut sum = 0;
|
||||
while number > 0 {
|
||||
let digit = number % 10;
|
||||
sum += digit * digit;
|
||||
number /= 10;
|
||||
}
|
||||
|
||||
sum
|
||||
};
|
||||
|
||||
// We ended up in a cycle -> not happy
|
||||
if number == 4 {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
/// Determines whether the given, positive, non-zero number is a prime number.
|
||||
fn is_prime(n: u64) -> bool {
|
||||
if n == 1 {
|
||||
return false;
|
||||
}
|
||||
|
||||
for divisor in 2..n {
|
||||
if n % divisor == 0 {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
450
aufgaben/sheet4/sol2/calculator.rs
Executable file
450
aufgaben/sheet4/sol2/calculator.rs
Executable file
@ -0,0 +1,450 @@
|
||||
//! A simple command-line calculator
|
||||
//!
|
||||
|
||||
/// The integer type we use internally to hold the numbers.
|
||||
type Integer = i64;
|
||||
|
||||
/// Represents an operation our calculator can carry out.
|
||||
#[derive(Debug, Clone, Copy, PartialEq)]
|
||||
enum Op {
|
||||
Add,
|
||||
Subtract,
|
||||
}
|
||||
|
||||
impl Op {
|
||||
/// The operation is applied to the given `lhs` and `rhs`. If an overflow
|
||||
/// occured during the operation, None is returned.
|
||||
fn apply(&self, lhs: Integer, rhs: Integer) -> Option<Integer> {
|
||||
match *self {
|
||||
Op::Add => lhs.checked_add(rhs),
|
||||
Op::Subtract => lhs.checked_sub(rhs),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents a (part of a) calculation.
|
||||
#[derive(Debug, PartialEq)]
|
||||
enum Expr {
|
||||
/// Just a literal number (no calculation needed)
|
||||
Literal(Integer),
|
||||
|
||||
/// An operation with two operands
|
||||
Op {
|
||||
/// Kind of operation
|
||||
operator: Op,
|
||||
|
||||
/// The Operands.
|
||||
///
|
||||
/// The task said the operands should be saved as `Vec<Expr>`
|
||||
/// and it would be fine to hand in such a solution, but a vector
|
||||
/// is actually the wrong type here. We know that we always have
|
||||
/// exactly two operands, so a type that can hold any number of items
|
||||
/// is not correct.
|
||||
///
|
||||
/// The correct type is a pair or an array with two elements. But this
|
||||
/// will lead to a problem: fields are saved inside of the type and
|
||||
/// therefore it's not possible to have a recursive definition. The
|
||||
/// only way to do it, is to introduce one layer of indirection. A
|
||||
/// vector is such a layer, because it saves its contents on the heap.
|
||||
///
|
||||
/// A better choice is `Box<T>`. As a vector, it stores its content
|
||||
/// on the heap and also owns the content. But unlike the vector, a box
|
||||
/// always saves one element only.
|
||||
operands: Box<[Expr; 2]>,
|
||||
}
|
||||
}
|
||||
|
||||
/// Stuff that can go wrong during parsing. Of course, it's desirable to have
|
||||
/// even more information about an error, but this is not in the scope of this
|
||||
/// task. Apart from that, good error reporting is hard. That's why so many
|
||||
/// compiler (especially a few years ago) suck at it.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
enum ParseError {
|
||||
/// Empty input
|
||||
Empty,
|
||||
|
||||
/// A token that was not expected at that position in the input
|
||||
UnexpectedToken(Token),
|
||||
|
||||
/// More tokens were expected
|
||||
UnexpectedEof,
|
||||
|
||||
/// There are unmatched parenthesis
|
||||
UnmatchedParens,
|
||||
|
||||
/// More tokens in the input found, although none were expected
|
||||
UnexpectedAdditionalTokens,
|
||||
}
|
||||
|
||||
impl Expr {
|
||||
/// This function parses a list of tokens and returns the corresponding
|
||||
/// expression tree, if the parse was successful. The grammar for our
|
||||
/// expressions is:
|
||||
///
|
||||
/// ```
|
||||
/// expr := ⟨operand⟩ [⟨op⟩ ⟨operand⟩]
|
||||
/// operand := ⟨num⟩ | "(" ⟨expr⟩ ")"
|
||||
/// op := "+" | "-"
|
||||
/// num := "0" | "1" | ... | "9"
|
||||
/// ```
|
||||
///
|
||||
/// Parsing is difficult. Parsing mathematical infix notation like this can
|
||||
/// be done with the Shunting-yard algorithm [1]. But more general parsing
|
||||
/// algorithms to parse determinstic context-free grammars can be used,
|
||||
/// too. Recursive descent parsers are probably rather similar to the way
|
||||
/// humans think about a grammar.
|
||||
///
|
||||
/// This implementation does not implement a concrete algorithm (as far as
|
||||
/// I know).
|
||||
///
|
||||
/// [1]: https://en.wikipedia.org/wiki/Shunting-yard_algorithm
|
||||
fn parse(tokens: &[Token]) -> Result<Self, ParseError> {
|
||||
/// Parses an operand:
|
||||
///
|
||||
/// ```
|
||||
/// operand := ⟨num⟩ | "(" ⟨expr⟩ ")"
|
||||
/// ```
|
||||
///
|
||||
/// Note that it's usually nicer to build subslices of a slice instead
|
||||
/// of passing indices manually. But in this case it makes sense to
|
||||
/// work with "global" indices, because this function also returns an
|
||||
/// index into the slice.
|
||||
fn parse_operand(tokens: &[Token], start: usize)
|
||||
-> Result<(Expr, usize), ParseError>
|
||||
{
|
||||
// At this point, we expect an operand, so there need to be some
|
||||
// tokens left
|
||||
if start >= tokens.len() {
|
||||
return Err(ParseError::UnexpectedEof);
|
||||
}
|
||||
|
||||
match tokens[start] {
|
||||
// The operand is just a literal number
|
||||
Token::Number(n) => Ok((Expr::Literal(n), start + 1)),
|
||||
|
||||
// The operand is some operation
|
||||
Token::ParenOpen => {
|
||||
match parse_expr(tokens, start + 1) {
|
||||
Err(e) => Err(e),
|
||||
Ok((expr, after_expr)) => {
|
||||
// We expect the closing paren after the parsed
|
||||
// expression
|
||||
if tokens.get(after_expr) != Some(&Token::ParenClose) {
|
||||
return Err(ParseError::UnmatchedParens);
|
||||
}
|
||||
Ok((expr, after_expr + 1))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// An operand starts either with a number or an opening paren
|
||||
tok => Err(ParseError::UnexpectedToken(tok)),
|
||||
}
|
||||
}
|
||||
|
||||
/// Parses an expression:
|
||||
///
|
||||
/// ```
|
||||
/// expr := ⟨operand⟩ [⟨op⟩ ⟨operand⟩]
|
||||
/// ```
|
||||
///
|
||||
fn parse_expr(tokens: &[Token], start: usize)
|
||||
-> Result<(Expr, usize), ParseError>
|
||||
{
|
||||
// First: parse the left hand side (lhs).
|
||||
let (lhs, after_lhs) = match parse_operand(tokens, start) {
|
||||
Err(e) => return Err(e),
|
||||
Ok(tuple) => tuple,
|
||||
};
|
||||
|
||||
// If the lhs consumed all of our tokens, the LHS is the only
|
||||
// expression -> return it. Otherwise we expect an operator.
|
||||
let op = match tokens.get(after_lhs) {
|
||||
Some(&Token::Plus) => Op::Add,
|
||||
Some(&Token::Minus) => Op::Subtract,
|
||||
_ => return Ok((lhs, after_lhs)),
|
||||
};
|
||||
|
||||
// Parse the rhs.
|
||||
let (rhs, after_rhs) = match parse_operand(tokens, after_lhs + 1) {
|
||||
Err(e) => return Err(e),
|
||||
Ok(tuple) => tuple,
|
||||
};
|
||||
|
||||
Ok((
|
||||
Expr::Op {
|
||||
operator: op,
|
||||
operands: Box::new([lhs, rhs]),
|
||||
},
|
||||
after_rhs,
|
||||
))
|
||||
}
|
||||
|
||||
|
||||
// Check for special case: no tokens.
|
||||
if tokens.is_empty() {
|
||||
return Err(ParseError::Empty);
|
||||
}
|
||||
|
||||
// Start parsing the token stream as ⟨expr⟩
|
||||
let (expr, after_expr) = match parse_expr(&tokens, 0){
|
||||
Err(e) => return Err(e),
|
||||
Ok(t) => t,
|
||||
};
|
||||
|
||||
// Check if tokens are left (shouldn't happen) and return an error
|
||||
// if that is the case.
|
||||
if after_expr < tokens.len() {
|
||||
return Err(ParseError::UnexpectedAdditionalTokens);
|
||||
}
|
||||
|
||||
Ok(expr)
|
||||
}
|
||||
|
||||
/// Evaluates the expression tree to calculate the final result. If an
|
||||
/// overflow occured, None is returned.
|
||||
fn evaluate(&self) -> Option<Integer> {
|
||||
match *self {
|
||||
Expr::Literal(value) => Some(value),
|
||||
Expr::Op { operator, ref operands } => {
|
||||
let lhs = match operands[0].evaluate() {
|
||||
None => return None,
|
||||
Some(lhs) => lhs,
|
||||
};
|
||||
|
||||
let rhs = match operands[1].evaluate() {
|
||||
None => return None,
|
||||
Some(rhs) => rhs,
|
||||
};
|
||||
|
||||
operator.apply(lhs, rhs)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A token in the input stream.
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
enum Token {
|
||||
Plus,
|
||||
Minus,
|
||||
ParenOpen,
|
||||
ParenClose,
|
||||
Number(Integer),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
enum LexError {
|
||||
InvalidChar(char),
|
||||
Overflow,
|
||||
}
|
||||
|
||||
/// Tokenizes the string and returns a list of tokens, if the input is valid.
|
||||
fn tokenize(input: &str) -> Result<Vec<Token>, LexError> {
|
||||
let mut out = Vec::new();
|
||||
let mut current_number = String::new();
|
||||
|
||||
for c in input.chars() {
|
||||
// Check if we were reading a number and reached the end of it
|
||||
if !current_number.is_empty() && !(c >= '0' && c <= '9') {
|
||||
let num: Integer = match current_number.parse() {
|
||||
// The string contains valid digits only, so "overflow" is the
|
||||
// only reason `parse()` would error.
|
||||
Err(_) => return Err(LexError::Overflow),
|
||||
Ok(v) => v,
|
||||
};
|
||||
out.push(Token::Number(num));
|
||||
current_number.clear();
|
||||
}
|
||||
|
||||
let token = match c {
|
||||
'+' => Token::Plus,
|
||||
'-' => Token::Minus,
|
||||
'(' => Token::ParenOpen,
|
||||
')' => Token::ParenClose,
|
||||
c @ '0' ... '9' => {
|
||||
// We do not yet generate a token, but only push the char on
|
||||
// the number buffer
|
||||
current_number.push(c);
|
||||
continue;
|
||||
},
|
||||
c if c.is_whitespace() => continue,
|
||||
c => return Err(LexError::InvalidChar(c)),
|
||||
};
|
||||
out.push(token);
|
||||
}
|
||||
|
||||
// If the last token is a number, we still have to push it
|
||||
if !current_number.is_empty() {
|
||||
let num: Integer = match current_number.parse() {
|
||||
// The string contains valid digits only, so "overflow" is the
|
||||
// only reason `parse()` would error.
|
||||
Err(_) => return Err(LexError::Overflow),
|
||||
Ok(v) => v,
|
||||
};
|
||||
out.push(Token::Number(num));
|
||||
}
|
||||
|
||||
Ok(out)
|
||||
}
|
||||
|
||||
fn main() {
|
||||
loop {
|
||||
// Read input from the user and just do nothing when the input is empty
|
||||
let input = read_string();
|
||||
if input.is_empty() {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Try to tokenize the input. If it fails, print error message and
|
||||
// start anew.
|
||||
let tokens = match tokenize(&input) {
|
||||
Err(e) => {
|
||||
println!("{:?}", e);
|
||||
continue;
|
||||
}
|
||||
Ok(tokens) => tokens,
|
||||
};
|
||||
|
||||
// Debug output
|
||||
// println!("{:?}", tokens);
|
||||
|
||||
// Try to parse the tokenstream into an expression. If it fails,
|
||||
// print the error and start anew.
|
||||
let expr = match Expr::parse(&tokens) {
|
||||
Err(e) => {
|
||||
println!("error: {:?}", e);
|
||||
continue;
|
||||
}
|
||||
Ok(expr) => expr,
|
||||
};
|
||||
|
||||
// Debug output
|
||||
// println!("{:?}", expr);
|
||||
|
||||
// Evaluate the expression and print the result
|
||||
match expr.evaluate() {
|
||||
None => println!("Overflow occured!"),
|
||||
Some(res) => println!("{}", res),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Reads a string from the user (with a nice prompt).
|
||||
fn read_string() -> String {
|
||||
use std::io::Write;
|
||||
|
||||
// Print prompt
|
||||
print!("calc > ");
|
||||
std::io::stdout().flush().unwrap();
|
||||
|
||||
// Read line
|
||||
let mut buffer = String::new();
|
||||
std::io::stdin()
|
||||
.read_line(&mut buffer)
|
||||
.expect("something went horribly wrong...");
|
||||
|
||||
// Discard trailing newline
|
||||
let new_len = buffer.trim_right().len();
|
||||
buffer.truncate(new_len);
|
||||
|
||||
buffer
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn parser_valid() {
|
||||
use Token::*;
|
||||
|
||||
// "3"
|
||||
assert_eq!(
|
||||
Expr::parse(&[Number(3)]).unwrap(),
|
||||
Expr::Literal(3)
|
||||
);
|
||||
|
||||
// "(3)"
|
||||
assert_eq!(
|
||||
Expr::parse(&[ParenOpen, Number(3), ParenClose]).unwrap(),
|
||||
Expr::Literal(3)
|
||||
);
|
||||
|
||||
// "3 + 4"
|
||||
assert_eq!(
|
||||
Expr::parse(&[Number(3), Plus, Number(4)]).unwrap(),
|
||||
Expr::Op {
|
||||
operator: Op::Add,
|
||||
operands: Box::new([
|
||||
Expr::Literal(3),
|
||||
Expr::Literal(4),
|
||||
]),
|
||||
}
|
||||
);
|
||||
|
||||
// "(3 + 4)"
|
||||
assert_eq!(
|
||||
Expr::parse(&[ParenOpen, Number(3), Plus, Number(4), ParenClose]).unwrap(),
|
||||
Expr::Op {
|
||||
operator: Op::Add,
|
||||
operands: Box::new([
|
||||
Expr::Literal(3),
|
||||
Expr::Literal(4),
|
||||
]),
|
||||
}
|
||||
);
|
||||
|
||||
// "(3) + 4"
|
||||
assert_eq!(
|
||||
Expr::parse(&[ParenOpen, Number(3), ParenClose, Plus, Number(4)]).unwrap(),
|
||||
Expr::Op {
|
||||
operator: Op::Add,
|
||||
operands: Box::new([
|
||||
Expr::Literal(3),
|
||||
Expr::Literal(4),
|
||||
]),
|
||||
}
|
||||
);
|
||||
|
||||
// "(3 - 7) + 4"
|
||||
assert_eq!(
|
||||
Expr::parse(&[
|
||||
ParenOpen, Number(3), Minus, Number(7), ParenClose, Plus, Number(4)
|
||||
]).unwrap(),
|
||||
Expr::Op {
|
||||
operator: Op::Add,
|
||||
operands: Box::new([
|
||||
Expr::Op {
|
||||
operator: Op::Subtract,
|
||||
operands: Box::new([
|
||||
Expr::Literal(3),
|
||||
Expr::Literal(7),
|
||||
]),
|
||||
},
|
||||
Expr::Literal(4),
|
||||
]),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn parser_invalid() {
|
||||
use Token::*;
|
||||
|
||||
// ""
|
||||
assert!(Expr::parse(&[]).is_err());
|
||||
|
||||
// "-"
|
||||
assert!(Expr::parse(&[Minus]).is_err());
|
||||
|
||||
// "1 +"
|
||||
assert!(Expr::parse(&[Number(1), Plus]).is_err());
|
||||
|
||||
// "1 + 2 + 3"
|
||||
assert!(Expr::parse(&[Number(1), Plus, Number(2), Plus, Number(3)]).is_err());
|
||||
|
||||
// "(1"
|
||||
assert!(Expr::parse(&[ParenOpen, Number(1)]).is_err());
|
||||
|
||||
// "1)"
|
||||
assert!(Expr::parse(&[Number(1), ParenClose]).is_err());
|
||||
}
|
Loading…
Reference in New Issue
Block a user